A bio-inspired approach for the design of a multifunctional robotic end-effector customized for automated maintenance of a reconfigurable vibrating screen
نویسندگان
چکیده
The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula: see text] and [Formula: see text]), normal forces ([Formula: see text]) and total load [Formula: see text] acting on the teeth of the worm-gear module of the multifunctional robotic end-effector during the gripping of worn-out or new RVS machine subsystems, which are 978.547, 1245.06 and 1016.406 N, respectively, were satisfactory. The nominal bending and torsional stresses acting on the shoulder of the socket module of the multifunctional robotic end-effector during the loosing and tightening of bolts, which are 1450.72 and 179.523 MPa, respectively, were satisfactory. The hammering and unpinning forces utilized by the electric cylinder actuator module of the multifunctional robotic end-effector during the unpinning and hammering of screen panel pins out of and into the screen panels were satisfactory.
منابع مشابه
A maintenance system model for optimal reconfigurable vibrating screen management
The reconfigurable vibrating screen (RVS) machine is an innovative beneficiation machine designed for screening different mineral particles of varying sizes and volumes required by the customers’ through the geometric transformation of its screen structure. The successful RVS machine upkeep requires its continuous, availability, reliability and maintainability. The RVS machine downtime, which c...
متن کاملAn LPV Approach to Sensor Fault Diagnosis of Robotic Arm
One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...
متن کاملExperimental Identification and Hybrid PID-Fuzzy Position Control of Continuum Robotic Arms
Continuum robotic arms that are inspired from nature, have many advantages compared to traditional robots, which motivate researchers in this field. Dynamic modeling and controlling these robots are challenging subjects due to complicated nonlinearities and considerable uncertainties existing in these structures. In this paper, first a dynamic three-dimensional model of the continuum robotic ar...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کامل